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The intriguing concept of inherent uncertainty of probability schemes in information 
theory and statistical inference is applied to the molecular electron density. The electron 
density function is treated as a multimodal, three-dimensional probability density func- 
tion describing the distribution of the electrons of a molecule in real space. A simple the- 
ory is proposed to introduce the amount of information associated with perturbations of 
the nuclear geometry such as molecular vibrations and reaction paths, in particular. It is 
shown by computations that the amount of information associated with the normal 
modes of vibration is related to the reduced mass. The proposed theory also suggests a 
novel Riemannian nuclear configuration space which is completely defined by the obser- 
vable electron density of a molecular system. 

1. I n t r o d u c t i o n  

In this paper,  the author  proposes a theory furnishing a link between information 
theory and molecular  electron density. The theory is based on the well-known con- 
cept o f  intrinsic uncertainty of  probabi l i ty  schemes in information theory and sta- 
tistical inference. The electron density function is treated as a mult imodal ,  three- 
dimensional probabi l i ty  density function describing the distr ibution of  the elec- 
trons of  a molecule in real space. The modi  of  the electron density distr ibution 
appear  at or near the atomic centers. The electron density function varies with the 
nuclear geometry,  and translates and rotates together with the nuclei. The fact that  
the Heisenberg uncertainty principle does not  allow the atoms to reside at an exact 
location is analogous  to the common situation in statistics where the unknown cen- 
ter(s) of  the distr ibution of  a statistical popula t ion can only be est imated by some 
statistic applied to random samples. Consider a hypothetical  experiment where 
points in three-dimensional space are picked randomly with respect to the electron 
density function (as a probabil i ty  density function), and points near to the a tomic 
centers of  a molecule are picked more  frequently than points far away f rom the 
atoms. This means the statistical popula t ion represented by the electron density 
function will be sampled and the location of  the atomic centers can be est imated in 
an unbiased manner  by, e.g., calculating the centroid of  the clusters o f  the randomly  
drawn sample-points.  
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The Cram6r-Rao theorem [1] imposes an intrinsic limitation on such statistical 
estimations based on the so-called Fisher information [2] - a measure of uncer- 
tainty - analogous to the Heisenberg uncertainty principle. The application of the 
Cram6r-Rao theorem to the electron density function reveals the inherent uncer- 
tainty of the location of the atoms of a molecule in three-dimensional space. 
Indeed; although in a very different manner, the analogy of the Cram6r-Rao theo- 
rem and the Heisenberg uncertainty principle has already been recognized in phys- 
ics. Caianiello introduced a quantum-mechanical analogue of the Fisher 
information and used the corresponding quantum counterpart of the Cram6r-Rao 
theorem to derive the Heisenberg uncertainty relationships [3,4]. 

The so-called Fisher information matrix [1 ] of the electron density is introduced. 
The Fisher information matrix gives rise to a unique interpretation of 
"information" associated with a small perturbation of a particular nuclear config- 
uration. Perturbations of the nuclear configuration which represent concerted 
atomic displacements, such as vibrational modes and reaction coordinates, are of 
particular interest. The proposed theory suggests a classification of vibrational 
modes in terms of their information content. The Fisher information matrix also 
defines a unique (information) distance along reaction paths representing chemical 
reactions or conformational interconversions. The proposed theory is elucidated in 
a computational working example. 

2. Theory 

THE CRAMI~R-RAO THEOREM 

A parametric family of probability density functionsp(r, q) is defined in the ran- 
dom space of the r = (r 1 , r2, . . . ,  r m) random variables with some fixed set of the 
q ___ (q l  q2 . . . ,  q~) parameters. The Cram6r-Rao theorem provides, subject to cer- 
tain regularity conditions, a lower bound for the variance of any unbiased estimator 
qi ofqi[1]: 

-1 
(Ologp(r, v a r ( ~ i ) ~ > ( / p ( r , q ) \  . ~qi q ) ) 2 d r )  (1) 

The expectation value in the outer parentheses on the right-hand side of eq. (1) 
is called the Fisher information about qi in a single observation of a particular set of 
the r random variables [1,2]. The more information about qi provided on average 
by a single observation, the smaller the lower bound for the variance of its estimator 
~¢i. Of course, the central limit theorem assures a diminishing var(~¢ i) by the well- 
known factor of 1/x/~ in multiple observations so that var(~ i) approaches zero in 
the limit as the number N of observations goes to infinity. 

For the univariate normal distribution p(r, q) = 1 / ~  exp( -  (x -/~)2/2o~), 
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as an example, r = (x) and q = (#, u). The estimators (/2, 6-) are equal to the sample 
mean and the sample standard deviation, respectively. The Fisher information with 
respect to # is equal to 2/o ~, and the Fisher information with respect to cr is equal to 
1/u 2. This example shows the meaning of Fisher information very intuitively; the 
inherent statistical uncertainty, represented by u, imposes a limit on the variance of 
the mean and standard deviation of a random sample. 

The Fisher information matrix is a straightforward multidimensional generali- 
zation of the Fisher information. The (i,j)th element of the symmetrical n x n 
Fisher information matrix is [1] 

i"=fP(r'-'(Ol°gp(r'q) (Ol°gp(r'q) )q)t ) \" ~ dr. (2) 

INFORMATION THEORY 

The significance of the Fisher information matrix is its intimate relationship to 
cross-entropy. In the context of the proposed theory, cross-entropy (often termed 
relative entropy of Kullback-Leibler information) is the information provided, on 
average, in a single observation to discriminate between two closely related distri- 
butionsp(r, q) andp(r, q + Aq), respectively [5,6]: 

I(q, q + Aq) = f p ( r ,  q + Aq)log p(r' q + Aq) dr (3) 
p(r,q) " 

It can be shown that subject to regularity conditions, the Taylor expansion of 
eq. (3), to within second order terms, reveals that cross-entropy can be expressed in 
terms of the Fisher information matrix [5]: 

n /q 

I (q ,q  + A n ) =  ½~-~ ~_,J}jAqiAq / + O((Aq)3) .  (4) 
i=1 j=l  

INFORMATION GEOMETRY 

Since the Fisher information matrix is symmetric, positive definite, and invariant 
under coordinate (parameter) transformations, the quadratic form in eq. (4) 
defines a suitable distance measure, termed information metric [7-10]. Rao [7] 
introduced the information metric to establish a distance measure ds 2 used to quan- 
tify the similarity between two infinitesimally different distributions p(r, q) and 
p(r, q + dq), respectively: 

ds 2 = ~ _ , f  ~jdqi dq j . (5) 
i=1 j=l 

The information metric allows for a fully geometrical interpretation and general- 
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ization of cross-entropy. Note that cross-entropy as defined in eq. (3), is not sym- 
metrical with respect to swapping p(r ,q)  with p( r ,q  + Aq). However, cross- 
entropy at the infinitesimal scale (eqs. (4) and (5)) is symmetrical. The information 
metric ds 2 in eq. (5) defines a Riemannian parameter space where the so-called 
information distance can be defined [7-10]. The information distance between two 
distributions is defined as the geodesic distance between their two representative 
points in the Riemannian parameter space. The information distance between two 
different univariate normal distributions, e.g., is equal to [10] 

2x/~tanh-1 ((#l - #2) 2 + 2(o'1 - cr2)2/(/Zl - #2) 2 + 2(Crl + cr2)2) 1/2 . 

ELECTRON DENSITY 

The electron density function p(r, q) is treated as a parametric family ofmultimo- 
dal, three-dimensional probability density functions describing the distribution of 
the electrons. The modi of the electron density distribution appear at or near the 
atomic centers. The "random" variables are the r = (x, y, z) points of the three- 
dimensional space and the parameters are the q = (q l  q2, . . . ,  ( )  nuclear coordi- 
nates. The shape of the electron density function varies with the nuclear geometry 
and, also, translates and rotates together with the nuclei. Different nuclear config- 
urations (molecular geometries) and/or different molecular positions in the three- 
dimensional space are represented by different members of the parametric family 
ofp(r, q) electron density functions. 

The Fisher information matrix of the electron density associated with a particu- 
lar nuclear configuration is defined as follows: 

j~j= 1 f p(r, q)(01ogp(r,0q i q) ) (01og~r , \  0q/ q)-)dr. (6) 

The logarithmic derivatives of the electron density function with respect to the 
qi (i --= 1 , . . . ,  n) nuclear coordinates are calculated at a particular nuclear config- 
uration and the region of integration is the entire three-dimensional space. The inte- 
gral is normalized by the number of electrons ne. The n × n Fisher information 
matrix is symmetric and positive definite; moreover, the choice of nuclear coordi- 
nates is immaterial, because the Fisher information matrix is invariant under coor- 
dinate transformations (see above). Nonetheless, internal and external coordinates 
should be distinguished, because internal coordinates do not take into account that 
electron density translates and rotates together with the nuclei. 

It is straightforward to apply eqs. (4) and (5) using the electronic Fisher informa- 
tion matrix of eq. (6). The parameter space of the electronic Fisher information 
matrix is nothing but the nuclear configuration space. Different (electron) distribu- 
tions correspond to different nuclear configurations, that is, to different molecular 
geometries. The Riemannian nuclear configuration space induced by the informa- 
tion metric (eq. (5)), based on the electronic Fisher information matrix (eq. (6)), is 
uniquely defined by the observable electron density of a molecular system. 
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An important difference, nevertheless, between information theory and the pro- 
posed theory should be noted. In information theory, the path connecting two dis- 
tributions in parameter space is usually irrelevant. The geodesic distance is usually 
associated with the shortest possible path. In the proposed theory, however, a path 
in nuclear configuration space has physical significance: it corresponds to a pertur- 
bation of the nuclear configuration. Perturbations of the nuclear configuration 
which represent concerted atomic displacements such as vibrational modes and 
reaction coordinates, are of particular interest. The author therefore suggests the 
following applications of the electronic Fisher information matrix: 

n n 

[vib = ~_a Z f i J  Aqi Aqj " (7) 
i=1 j = l  

Lib is the Fisher information associated with a particular vibrational mode repre- 
sented by the corresponding unit-length eigenvector Aq of the mass-weighted 
Hessian matrix. The components of Aq represent the individual atomic displace- 
ments in that particular vibrational mode. The Fisher information matrix J~j is 
defined in eq. (6), and the number of nuclear coordinates n depends on the coordi- 
nate system. Note that Lib is invariant under coordinate transformations. 

Fisher information associated with a particular reaction path can also be defined 
by integrating eq. (5) along the reaction path: 

Irc ~-'~f ij dqi dqJds (8) 
i=l j=l ds ds " 

Irc is defined in eq. (8) as the curve-integral of the square root of the information 
metric. The curve describes a particular reaction path in the nuclear configuration 
space. Note that this particular form ofeq. (8) assumes that the curve is parameter- 
ized with respect to arc length. /r~ is also invariant under coordinate transforma- 
tions. 

3. Computa t ions  

The proposed theory is elucidated in a computational working example involving 
ammonia, formaldehyde, and hydrogen peroxide. The calculations were completed 
on a Hewlett-Packard 9000/705 workstation running the Gaussian 92 /DFT pro- 
gram package [11]. The wavefunctions were calculated by density functional theory 
using the 6-311G** basis set at fully optimized geometries. Density functional the- 
ory was employed as defined by the "B3P86" Gaussian keyword. The Fisher infor- 
mation matrix was calculated utilizing a modified version of the Extreme program 
of the A I MP A CK package [12]. Extreme was used for extracting the electron den- 
sity from the Gaussian wavefunction and additional programs were written by the 
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author  to calculate the electron density derivatives with respect to the Cartesian 
nuclear coordinates and, to render the integration. The electron density derivatives 
were calculated numerically employing central differences. The three-dimensional 
integrals were also calculated numerically employing a spherical quadrature  com- 
prised of  concentric shells (radial part: Gauss-Laguerre  quadrature  [13], angular  
part: Lebedev-Skorokhodov quadrature  [ 14]). 

The results of  the calculations with respect to L;b are summarized in Table 1. It is 
notewor thy  that  Fisher information is characteristic of  the vibrations in terms of  the 
involvement of  heavy atoms in a particular vibrational mode. This is clearly shown 
by the correlation between Lib and the reduced mass. For  ammonia ,  it is the s-deform 
vibration possessing the largest amount  of  Fisher information.  Note  that  the s- 
deform vibration is primarily responsible for the ammonia  inversion. 
Formaldehyde  and hydrogen peroxide are both displaying vibrations involving 
mainly heavy atoms; CO stretch and OO stretch, respectively. Note  that  the asso- 
ciated Fisher informat ion Lib is in both cases larger than those of  the remaining 
vibrations, by an order of  magnitude. The corresponding reduced masses are also 

Table 1 
Fisher information along the vibrational modes of ammonia, formaldehyde and hydrogen peroxide. 

Vib. mode a Freq. b (cm-1) Red. mass (amu) Lib ~ 

Ammonia s-deform 1064 1.18 .211 
d-deform 1676 1.07 .112 
s-stretch 3485 1.03 .138 
d-stretch 3612 1.09 .193 

Formaldehyde 

Hydrogen peroxide 

CH2 wag 1201 1.37 .193 
CH2 rock 1269 1.35 .199 
CH2 scis. 1537 1.10 .127 
CO stretch 1845 7.78 4.10 
CH2 s-stretch 2890 1.04 . 104 
CH2 a-stretch 2944 1.12 .143 

torsion 368 1.08 .0986 
OO stretch 976 14.4 3.81 
OH bend 1310 1.10 .0658 
OH bend 1461 1.09 .112 
OH stretch 3815 1.07 .09 l 3 
OH stretch 3816 1.07 .116 

a The vibrational modes are depicted with the standard spectroscopical terms. 
b The frequencies were calculated analytically with the B3P86/6-311G** wavefunction [11]. 
C The step size for numerical differentiation was set to 0.001 A. The radial part of the numerical 

integration employed the 250 point Gauss-Laguerre quadrature (a = 2) [13] with a 5 ~ cutoff, 
resulting in a reduced set of the innermost 30 shells. The angular part of the integration employed 
the largest Lebedev-Skorokhodov grid containing 986 integration points [14] per shell. The unit of 
Fisher information is 1 ~distance 2 in atomic units. 
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much larger than those associated with vibrations primarily involving the hydrogen 
atoms. 

4. C o n c l u d i n g  remarks 

The correlation between Lib and the reduced mass can be at t r ibuted to the elec- 
t ron density derivatives in eq. (6). It is intuitively clear that displacement of  a heavy 
a tom results in a more  significant variation of  the electron density than displace- 
ment  of  a light atom, i.e., hydrogen. Therefore, the variation of  the electron density 
along a part icular direction in the nuclear configuration space according to eq. (7) 
depends on the relative amount  of  heavy a tom displacements (reduced mass) in that  
part icular  vibrational mode.  It remains to be seen, however,  whether a model  can 
be found to establish the link between Fisher information and the vibrational 
modes  in analytical form. 
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